Short communication

Identification of two serological flagellar types (H1 and H2) in *Pseudomonas syringae* pathovars

Christiane Guillorit-Rondeau, Laurence Malandrin and Regine Samson*

Centre INRA d'Angers, Station de Pathologie végétale, BP 57, 49071 Beaucouzé Cedex, France (Fax: 41 225705);*Author for correspondence

Accepted 11 May 1995

Key words: serotypes, P. cichorii, P. corrugata, P. fluorescens, P. tolaasii, P. viridiflava, flagella

Abstract

Flagellar antigen specificity was studied for the species *Pseudomonas syringae*, *P. viridiflava* and *P. cichorii*. After checking their motility, bacteria were reacted against six polyclonal antisera containing anti-O (LPS) and anti-H (flagellar) antibodies by indirect immunofluorescent staining. Two distinct flagellar serotypes (H1 and H2) were described. The distribution of H1 and H2 serotypes was then determined for a collection of 88 phytopathogenic *Pseudomonas* strains. Serotype H1 was possessed by *P. syringae* pv. aptata (12 strains), *P. s.* pv. helianthi (2), *P. s.* pv. pisi (11), and *P. s.* pv. syringae (13). Serotype H2 was possessed by *P. cichorii* (2), *P. s.* pv. delphinii (1), *P. s.* pv. glycinea (4), *P. s.* pv. lacrymans (1), *P. s.* pv. mori (1), *P. s.* pv. morsprunorum (10), *P. s.* pv. persicae (1), *P. s.* pv. phaseolicola (8), *P. s.* pv. tabaci (10) and *P. s.* pv. tomato (1). *P. viridiflava* (5) revealed HI, H2 and untyped flagella. The following isolates were untypable by the H1/H2 system: *P. corrugata* (3), *P. fluorescens* (2), *P. tolaasii* (1). H1/H2 serotypes distribution is not linked to *P. syringae* O-serogroups. On the other hand, H1/H2 distribution seems remarkably linked to the new genospecies of the *P. syringae* group.

Abbreviations: CFBP = French Collection of Phytopathogenic Bacteria, Angers, France; ICMP = International Collection of Micro-organisms from Plants, Auckland, New-Zealand; NCPPB = National Collection of Plant Pathogenic Bacteria, Harpenden, Great Britain.

The Pseudomonas syringae group, identified by the criteria of Palleroni [1984] (fluorescent pigment, no oxidase nor arginine-dihydrolase, hypersensitive reaction on tobacco) consists of 49 pathovars [Young et al., 1991]. Earlier studies of the serological properties of P. syringae showed that the O-antigens (cell wall lipopolysaccharides) were the dominant antigens [(Guillorit and Samson, 1993 a and b]. O-groupings were found to have limited value in the identification of individual pathogens in the case of pathovars belonging to the same O-serogroup. For instance, serological detection of P. syringae pv. pisi occasionally gives false positive results because some P. syringae pv. syringae strains cross-react with APTPIS antisera [Grondeau et al., 1992]. For this reason, the differentiation of pathogens using other kinds of antigens was investigated. In particular, the use of bacterial flagella (H) antigens of genera such as *Salmonella* is well developed [Le Minor, 1984]. Because of its pathogenicity to human beings, the type-species of the *Pseudomonas* genus (*P. aeruginosa*), has also been well studied and H serotypes were described [Lanyi, 1970]. In the present study, serological types of flagella within *P. syringae* pathovars were established and compared to some phytopathogenic *Pseudomonas* species. Immunofluorescent staining was chosen because fixation of the antibodies on the cell wall or on the flagella could be directly observed.

A total of 88 *Pseudomonas* isolates were studied (Table 1). Strains were identified by methods described by Lelliott and Stead [1987] and Hildebrand *et al.* [1988]; specifically levan, oxidase, pectolysis, argi-

Table 1. Isolates of Pseudomonas spp.

CFBP strain	Alternate designation	Host plant	Origin	Year	Flagellar serotype	
P. cichorii						
1373	28-1	Lactuca scariola	France	1972	H2	
2101 ^T	NCPPB 943 ^T	Cichorium endivia	- *	1929	H2	
P. corrugata						
_	Lopez 53	Lycopersicum esculentum	Spain	– unknown		
_	Lopez 113	L. esculentum	Spain	_	unknown	
_	Lopez 903FS	L. esculentum	Spain		unknown	
P. fluorescens			•			
2022	584–1	Allium sativum	France	1976	unknown	
2569	M32-1	Prunus armeniaca	France	1979	unknown	
P. syringae pv. aptata						
1617 ^T	NCPPB 871 ^T	Beta vulgaris	USA	1959	H1	
1625	NCPPB 873	B. vulgaris	USA	1959	H1	
1906	1357–1	B. vulgaris	France	1979	H1	
2042	SA33-5	B. vulgaris	France	1981	H1	
2134	SA84-6	B. vulgaris	France	1981	Hl	
2135	SB30-3	B. vulgaris	France	1982	H1	
2279	JA100-1	B. vulgaris	France	1981	H1	
2280	JB47	B. vulgaris	France	1982	H1	
2471	PD 565	B. vulgaris	Netherlands	1985	H1	
2472	PD 196	B. vulgaris	Netherlands	1979	H1	
2473	PD 197	B. vulgaris	Netherlands	1979	HI	
2507	PD 202	B. vulgaris	Netherlands	1979	H1	
P. syringae pv. delphinii		Ü				
2215 ^T	ICMP 52B ^T	Delphinium sp.	New Zealand	1957	H2	
P. syringae pv. glycinea						
1518	NCPPB 2070	Glycine max	USA	1962	H2	
1563	NCPPB 2753	G. max	France	1974	H2	
2214 ^T	ICMP 2189 ^T	G. max	New Zealand	1968	H2	
3361	Fett A29–2	G. max	USA	1975	H2	
P. syringae pv. helianthi						
1732	NCPPB 2639	Helianthus annuus	Canada	1974	H1	
2149	SA51-1	H. annuus	France	1981	H1	
P. syringae pv. lacrymans						
1644	NCPPB 1096	Cucumis sativus	Hungary	1957	H2	
P. syringae pv. mori			,			
2453	1900B	Morus sp.	France	1984	H2	
P. syringae pv. morsprunorum		· r ·				
1565	NCPPB 2756	Prunus domestica	France	1965	H2	
1566	768-7	P. cerasus	France	1968	H2	
1647	NCPPB 1781	P. avium	Italy	-	H2	
1650	NCPPB 2422	P. domestica	Switzerland	1965	H2	
1658	NCPPB 2320	P. domestica	Rumania	1969	H2	
1741	NCPPB 2787	P. avium	Greece	1961	H2	
2115	G88-9	P. cerasus	France	1975	H2	
2119	E13-20	P. cerasus	France	1974	H2	
2332	EM78	P. cerasus	Great Britain	1976	H2	
2351 ^T	NCPPB 2995 ^T	P. domestica	USA	-	H2	

Table 1. Continued

BP strain Alternate designation		Host plant	Origin	Year	Flagellar serotype	
P. syringae pv. persicae						
1316	NCPPB 2324	P. persica	France	1970	H2	
P. syringae pv. phaseolicola	_					
1390 ^T	NCPPB 52 ^T	Phaseolus vulgaris	Canada	1949	H2	
1429	IPO 38	P. vulgaris	Netherlands	-	H2	
1508	Ha1a	P. vulgaris	Germany	1972	H2	
1652	NCPPB 1103	P. vulgaris	Hungary	1956	H2	
1659	NCPPB 2435	Vigna radiata	USA	1971	H2	
1662	NCPPB 604	Phaseolus coccineus	Great Britain	1958	H2	
1667	NCPPB 1647	Dolichos sp.	Tanzania	1964	H2	
1743	NCPPB 1098	Phaseolus vulgaris	New Zealand	1953	H2	
P. syringae pv. pisi						
2105 ^T	ICMP 2452 ^T , R2	Pisum sativum	New Zealand	1969	Hl	
2702	NCPPB 2222, R1	P. sativum	Italy	1969	H1	
2704	Taylor 870A, R3	P. sativum	USA	1975	H1	
2706	Taylor 895A, R4	P. sativum	USA	1975	Hl	
2707	Taylor 974B, R5	P. sativum	USA	1978	H1	
2710	Taylor 1683, R6	P. sativum	Hungary	1956	H1	
3283	Taylor 277, R1	P. sativum	Australia	1938	H 1	
3288	Taylor 2491B, R1	P. sativum	Great Britain	1989	H 1	
3522	SG30-5	P. sativum	France	1987	H1	
_	SH207-14	P. sativum	France	1988	H1	
_	Si319A7	P. sativum	France	1989	H1	
P. syringae pv. syringae						
602	NCPPB 2775	Malus sylvestris	France	1964	H1	
1579	NCPPB 2769	Prunus cerasus	France	1974	H1	
1669	NCPPB 294	Populus sp.	Great Britain	_	H1	
1679	NCPPB 1041	Piper nigrum	Brasil	1958	H1	
1685	NCPPB 2264	Zea mays	Yugoslavia	1965	H1	
1894	896–2	Z. mays	France	1978	H1	
2009	ICMP 849	Prunus avium	New Zealand	1974	H1	
3077	20-27-37	Pyrus communis	France	1983	H1	
3388	Psi3	Vicia sativa	France	1992	H1	
_	SF15-10	Pisum sativum	France	1986	H1	
_	SH243A1K	P. sativum	France	1988	H1	
-	Si30A1K	P. sativum	France	1989	Hl	
_	SJ77-7	P. sativum	France	1990	Hl	
P. syringae pv. tabaci						
1503	BBL Dpt 5	Nicotiana tabacum	_	_	H2	
1615	NCPPB 79	N. tabacum	USA	1935	H2	
1621	NCPPB 1866	N. tabacum	_	_	H2	
1699	NCPPB 1408	N. tabacum	Hungary	1959	H2	
1721	NCPPB 1238	N. tabacum	Malaysia	1962	H2	
1774	NCPPB 1234	N. tabacum	Zambia	1962	H2	
1775	NCPPB 2729	Glycine max	Australia	1972	H2	
1783	NCPPB 1919	Nicotiana tabacum	_	1966	H2	
1786	NCPPB 2728	Glycine max	Australia	1972	H2	
2106 ^T	NCPPB 1427	Nicotiana tabacum	Hungary	1959	H2	

Table 1. Continued

CFBP strain	Alternate designation	Host plant	Origin	Year	Flagellar serotype	
P. syringae pv. tomato		·				
2212 ^T	NCPPB 1106 ^T	Lycopersicum esculentum	Great Britain	1960	H2	
P. tolaasii						
2068 ^T	NCPPB 2192 ^T	Agaricus bisporus	Great Britain	1965	unknown	
P. viridiflava						
1141	NCPPB 1249	Chrysanthemum morifolium	Great Britain	1962	H2	
1466	T6-1	Lycopersicum esculentum	France	1972	unknown	
1468	V9b	Prunus domestica	France	1972	H1	
2107 ^T	NCPPB 635	Phaseolus sp.	Switzerland	1927	H2	
2555	M71-1	Pyrus communis	France	1979	H2	

T: type strain; *: no data; R: race

nine and tobacco tests (LOPAT), hydrolysis of casein, tyrosine, and aesculin; and acidification or alkalinisation of the carbohydrates in a mineral medium. Results of tests on these strains confirmed their authenticity.

Antisera were produced in rabbits inoculated with bacterial suspensions (10⁸ cells per ml) washed in phosphate buffer (0.01 M, pH 7.2) and treated with formalin (0.5%) after 24 h growth in shaken YP broth (yeast extract 0.3% w/v, peptone 0.5% w/v). Four intravenous injections were administered to the rabbits within two weeks. When the antiserum titre was high enough (1/16 by Ouchterlony double diffusion and 1/1600 by immunofluorescent staining), the animals were bled. Injections were sometimes repeated after one month's rest. This way, OH antisera were produced that contained anti-O and anti-H antibodies.

The reacting antigens were prepared as follows. Strains were grown on YP semi-solid agar (0.3% agar w/v). Motility was ascertained using a phase-contrast microscope, and only motile strains were tested by immunofluorescent staining [Faure *et al.*, 1977]. The indirect reaction was performed on suspensions of 10^7 cells per ml (20 μ l), deposited on a microscope slide. The rabbit sera under test were used for the first step of the reaction, and a fluorescent serum (antirabbit IgG H and L chains antibodies, labelled with fluorescein isothiocyanate) for the second step. All rinsings and dilutions were performed with phosphate buffer (0.01 M, pH 7.2). Reactions were observed in epifluorescence under UV light, which revealed bacterial cells and their flagella (Fig. 1).

Among the various antisera prepared for previous studies [Samson and Saunier, 1987; Guillorit and Samson, 1993 a and b], some antisera gave non-specific

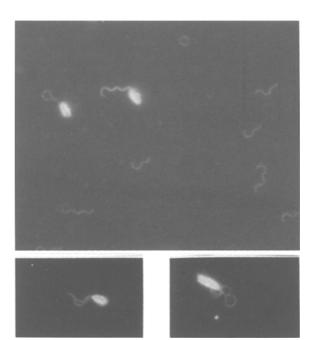


Fig. 1. Pseudomonas syringae pv. pisi (2105^T) cells stained with immunofluorescent technique (indirect method, antiserum S184–1). Notice the cell bodies, polar flagella and free flagella. The three pictures show various observations of the polar flagella after glass slide adsorption. Microscope photography at 1,000 magnification.

bands observed by Ouchterlony double-diffusion, suggesting the existence of flagellar antigens. Six antisera revealed anti-H antibodies: S32 against 1373 (*P. cichorii*), S223–2 against 1732 (*P. s.* pv. *helianthi*), S183–2 against 2115 (*P. s.* pv. *morsprunorum*), S184–1 against 2105^T (*P. s.* pv. *pisi*), S115–2 against 1894 (*P. s.* pv. *syringae*) and S191–2 against 2212^T (*P. s.* pv.

Pseudomonas strain	Antiserum						
	S32	S223-2	S183-2	S184-1	S115-2	S191-2	
	Directed against						
	1373	1732	2115	2105 ^T	1894	2212 ^T	
P. cichorii 1373	+*	_	+		_	+	
P.s. pv. helianthi 1732	_	+	_	+	+	_	
P.s. pv. morsprunorum 2115	+	_	+	_	_	+	
P. s. pv. pisi 2105 ^T	_	+	_	+	+	_	
P.s. pv. syringae 1894	_	+	_	+	+	_	
P.s. pv. tomato 2212 ^T	+	_	+	_	_	+	
Flagellar serotype	H2	H1	H2	H1	H1	H2	

Table 2. Definition of the two flagellar serotypes (H1 and H2) by immunofluorescent staining method with six antisera raised against *Pseudomonas cichorii* and *P. syringae* pathovars

tomato). All six antisera were cross-tested with the six bacteria (Table 2). The strains 1732, 2105^T and 1894 showed fluorescent flagella indistinctly by the use of their three respective antisera. This behaviour defined the H1 serotype. The strains 1373, 2115 and 2112^T reacted with the three remaining antisera that defined a second H2 serotype. Only two mutually exclusive serotypes were observed.

The distribution of the two serotypes H1 and H2 was tested among 88 strains of *Pseudomonas* spp. Each strain was tested by immunofluorescent staining using the six-antiserum panel. 39 strains, belonging to four *P. syringae* pathovars and *P. viridiflava*, presented H1 serotype. 42 strains, belonging to nine *P. syringae* pathovars, *P. cichorii* and *P. viridiflava* presented an H2 serotype (Table 1). Although motile, seven strains showed no H1 nor H2 flagella reactions. Antisera should be produced against them to establish whether they would define additional serotypes. Several isolates of *P. syringae* were not included in the H-typing because they remained non-motile despite numerous attempts at enhancement trials on semi-solid agar.

H serotypes significantly cluster strains belonging to distinct *P. syringae* pathovars: H1 for pvs *aptata*, *helianthi*, *pisi* and *syringae*; H2 for the other pvs. Moreover, they are not randomly distributed in the pathovars. H clustering must be compared to the different genospecies of the *P. syringae* group recently described by Gardan *et al.* [1994] and Shaffik [1994] by quantitative DNA:DNA homology: H1 for the genospecies *P. syringae* (including pv. *aptata*, pv. *pisi* and pv. *syringae*) and *P. helianthi*; H2 for *P. savas*-

tanoi (including pv. glycinea, pv. lacrymans, pv. morsprunorum, pv. phaseolicola and pv. tabaci) and P. tomato (including pv. persicae and pv. tomato). The two H serotypes appear therefore linked to distinct taxonomical entities. They contribute to express genomic parenty between Pseudomonads. Thus, it has not been possible to find specific H antigens that could distinguish P. s. pv. pisi from P. s. pv. syringae.

H serotypes overlap the O-serogroups described for *P. syringae* pathovars [Samson and Saunier, 1987; Guillorit and Samson, 1993b]. For instance, pv. *glycinea* (O-serogroup APTPIS), pv. *lacrymans* (O-serogroup LAC), pv. *morsprunorum* (O-serogroups MOP1 and MOP2), pv. *phaseolicola* (O-serogroup PHA) and pv. *tabaci* (O-serogroup TAB) share the same H2 flagellar type. Earlier reports all indicated that heat-labile antigens were common between some *P. syringae* pathovars [Lovrekovich and Klement, 1961; Lucas and Grogan, 1969; Coleno *et al.*, 1970; Otta and English, 1971; Pastushenko and Simonovich, 1979]. It seems probable the common antigens reported were associated with flagella.

In contrast to the agglutination, double-diffusion and ELISA reactions, the fluorescent antibody technique allows the differentiation of bacterial soma and flagella at the morphological and serological levels simultaneously, and thereby, the specific analysis of flagellar H-antigens, even with OH-antisera. However, because flagellar preparations can be readily contaminated with small amounts of LPSs [Ada *et al.*, 1964], it is difficult to raise specific anti-H sera. Instead of anti-H sera, the use of anti-whole cell sera with immunofluorescent staining to visualize flagella is recommended.

T: type-strain; * +: fluorescent flagella, -: absence of fluorescent flagella

The same anti-whole cell sera are convenient for Oserogrouping *P. syringae* strains by double-diffusion, if antigenic preparations have been heated to eliminate cross-reactions of H antisera.

References

- Ada GL, Nossal GLV, Pye J and Abbot A (1964) Antigens in Immunity. I. Preparation and properties of flagellar antigens from Salmonella adelaide. Australian Journal of Experimental Biology and Medical Science 42: 267–270
- Coleno A, Hingand L and Barzic MR (1970) Contribution à l'étude de *Pseudomonas phaseolicola* (Burk) Dowson. Annales de Phytopathologie 2: 199–207
- Faure M, Dupouey P and Morelec MJ (1977) La technique de l'immunofluorescence et les réactions immunoenzymatiques, 566 p, Maloine, Paris.
- Gardan L, Shafik H and Bollet C (1994) Taxonomy of some pathovars of *Pseudomonas syringae*. Plant Pathogenic Bacteria, Versailles (France) Ed. INRA, Paris 1994 (Les colloques, 66): 419–420
- Grondeau C, Saunier M, Poutier F and Samson R (1992) Evaluation of physiological and serological profiles of *Pseudomonas syringae* pv. *pisi* for pea blight identification. Plant Pathology 41: 495–505
- Guillorit C and Samson R (1993a) Serological specificity of the lipopolysaccharides, the major antigens of *Pseudomonas* syringae. Journal of Phytopathology 137: 157–171
- Guillorit C and Samson R (1993 b) Serological study of four pathovars of *Pseudomonas syringae*: *Ps. syr. aptata*, *Ps. syr. tabaci*, *Ps. syr. mors-prunorum* and *Ps. syr. phaseolicola*. Journal of applied Bacteriology 74: 683–687
- Hildebrand DC, Schroth MN and Sands DC (1988) *Pseudomonas*. In: Schaad NW (ed) A Laboratory Guide for Identification of

- Plant Pathogenic Bacteria (pp. 60–80) American phytopathological Society, St. Paul Minnesota
- Lanyi B (1970) Serological properties of *Pseudomonas aeruginosa*.
 II. Type-specific thermolabile (flagellar) antigens. Acta microbiologica Academiae Scientarium Hungaricae 3: 303–310
- Lelliott RA and Stead DE (1987) Methods for the Diagnosis of Bacterial Diseases of Plants. Blackwell Scientific Publications, Oxford
- Le Minor L (1984) Salmonella. In: Krieg NR and Holt JG (eds) Bergey's Manual of Systematic Bacteriology (pp. 427–458) Williams and Wilkins, Baltimore
- Lovrekovich L and Klement Z (1961) Species-specific antigens of *Pseudomonas tabaci*. Acta microbiologica Academiae Scientarium hungaricae 3: 303–310
- Lucas LT and Grogan RG (1969) Serological variation and identification of *Pseudomonas lachrymans* and other phytopathogenic *Pseudomonas* nomenspecies. Phytopathology 59: 1908–1912
- Otta JD and English H (1971) Serology and pathology of *Pseudomonas syringae*. Phytopathology 61: 443–452
- Pastushenko L T and Simonovich I D (1979) (Groupes sérologiques des bactéries phytopathogènes du genre *Pseudomonas*. 1. Parenté antigénique intraspécifique). Mikrobiologicheski Zhurnal 41: 222–229. Translated by T. Babilliot, INRA Versailles France
- Samson R and Saunier M (1987) Désignation de références sérologiques pour six sérogroupes de pathovars de *Pseudomonas* syringae sur la base de leur lipopolyoside. Bull. OEPP/EPPO Bull. 17: 165–171
- Saunier M, Malandrin L and Samson R (submitted) Description of 23 O-serogroups within *Pseudomonas syringae* (sensu lato) and *P. viridiflava*
- Shafik HL (1994) Taxonomie des *Pseudomonas* phytopathogènes du groupe de *Pseudomonas syringae*: étude phénotypique et génotypique. Thèse Univ. Angers
- Young JM, Bradbury JF, Davis RE, Dickey RS, Ercolani GL, Hayward AC and Vidaver AK (1991) Nomenclatural revisions of plant pathogenic bacteria and list of names 1980–1988. Review of Plant Pathology 70: 211–221